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Abstract—Developers neglect to update legacy software depen-
dencies, resulting in buggy and insecure software. One explana-
tion for this neglect is the difficulty of constantly checking for
the availability of new software updates, verifying their safety,
and addressing any migration efforts needed when upgrading a
dependency. Emerging tools attempt to address this problem by
introducing automated pull requests and project badges to inform
the developer of stale dependencies. To understand whether
these tools actually help developers, we analyzed 7,470 GitHub
projects that used these notification mechanisms to identify any
change in upgrade behavior. Our results find that, on average,
projects that use pull request notifications upgraded 1.6x as
often as projects that did not use any tools. Badge notifications
were slightly less effective: users upgraded 1.4x more frequently.
Unfortunately, although pull request notifications are useful,
developers are often overwhelmed by notifications: only a third
of pull requests were actually merged. Through a survey, 62
developers indicated that their most significant concerns are
breaking changes, understanding the implications of changes,
and migration effort. The implications of our work suggests
ways in which notifications can be improved to better align with
developers’ expectations and the need for new mechanisms to
reduce notification fatigue and improve confidence in automated
pull requests.

I. INTRODUCTION

Developers are often occupied by the primary task of writing
new features or fixing known defects, and as a result, often ig-
nore or delay important but secondary preventive maintenance
tasks [1]. One such task, updating software dependencies, in-
cludes upgrading the versions of the many libraries, tools, and
packages that a program depends on [2]. The consequences of
neglecting to update out-of-date dependencies can be severe,
as dependencies can suffer from numerous security issues [3]
and buggy features [4]. For instance, Using Components with
Known Vulnerabilities [5] is listed as a top 10 application
security risk in 2017 by OWASP.

Unfortunately, updating dependencies can be a time con-
suming task [6]—large parts of code may need to be verified
and migrated to make use of new interfaces and changed
functionality before using an updated library. For example,
updating the mongodb driver for node.js from 2.0.x to
2.1.x affected the way order by parameters are used in
the sort function. Previously, parameters were allowed to
be specified as list of objects: [{publish_date: -1}]
but in the newer version, list of lists must be provided:
[["publish_date", -1]]. Upgrading a version of a

library that contains incompatibilities in data structures, sig-
nature changes to API calls, or behavior breaking changes [7]
can result in additional effort to address these changes. If
a developer fails to understand the nature of a dependency
change or perform insufficient testing, they can introduce
undetected faults in code. Such factors may cause a developer
to become reluctant to update dependencies. But, if they delay
updating code too long, they may be locked out of being able
to use important new features only available in new versions,
as it becomes more and more difficult to adapt their code.

An important challenge is to convince developers that they
should upgrade despite all the associated difficulties and risks.
One way to convince developers they should update is to
provide incentives that encourage them to update. For example,
badges are images that can be displayed on a Github project’s
profile page. External tools can update the images to reflect the
status of the project, such as build status or code coverage. A
popular tool, David-DM1, will check if a project’s dependency
is out-of-date and display a red version of the badge if
it is: . In the context of open source
systems, these badges can signal [8] to potential contributors
or users that the project uses practices such as continuous
integration (CI) and keeping its dependencies updated. Given
the importance of these signals in perceived quality [9], project
owners have a high incentive to maintain “green” badges.

Another way to encourage developers to upgrade is to
reduce the risk and effort involved through automated pull
requests. For example, several types of software engineering
bots [10] have emerged as automated mechanisms that can
help developers automate routine tasks, such as report code
coverage. A popular tool, greenkeeper2, is a bot that can
help keep a project’s dependencies up-to-date by automatically
updating versions of a dependency in a package management
file, such as maven (pom.xml) or npm (package.json) and
creating a pull request with the change. Using another bot,
such as Travisbot3, the automated pull request can further
trigger a continuous integration build and verify that no
breaking changes are identified by the passing test suite. With
the combined contributions of these bots, a developer may be

1https://david-dm.org/
2https://greenkeeper.io/
3https://travis-ci.org/
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able to gain confidence in performing an upgrade and more
quickly integrate a suggested upgrade.

Despite the importance of dependency management, there
is little empirical evidence supporting the effectiveness of
using mechanisms such as badges and automated pull requests.
Badges support awareness and create pressure but do not
provide actionable results. Automated pull requests support
actionable results, but factors such as notification fatigue [10]
and insufficient test coverage may reduce the effectiveness
of these requests. In this paper, we analysis 7,470 Github
projects, split into projects that exclusively use David-DM
(badges), greenkeeper (automated pull requests), or a baseline
of neither. We then survey developers on issues related to de-
pendency management and their experience using dependency
management tools and greenkeeper. We find that projects
that use automated pull requests upgrade dependencies 1.6x
over baseline projects, and projects with badges upgrade 1.4x
over baseline projects. The speed of updates is also faster
for automated pull requests (1.31x over badge, 1.33x over
baseline). Further, specific dependencies and their versions,
such as mongodb (version 0.7.5–2.2.26), are more likely
to be at their highest version (2.2.26) in projects using
automated pull requests. These finding are interesting in light
of results that find social factors tend to outperform technical
factors in predicting time to evaluate a pull request [11].

There were also several surprising results. For automated
pull requests, only 32% were merged (compared with 80% of
typical pull requests merged within 3 days [12]). Further, sev-
eral merged automated pull requests were often immediately
downgraded back after 2–3 days. For projects using continuous
integration to automatically build code in a pull request,
the merge rate was improved, but only marginally so (26%
merged without CI and 32% merged with CI). Finally, there is
evidence that developers’ suspicion of breaking changes is not
unfounded: 24% of builds fail when changing a dependency
version. This evidence provides guidance both for developers
establishing risk for performing an upgrade and for researchers
working on automated API migration [13].

Finally, developers provided several insights into their prac-
tices and behaviors associated with dependency management.
Developers were mixed in their preference for passive mech-
anisms such as dashboards and badges versus automated
mechanisms. Developers also reported several concerns related
to breaking changes and understanding the implications of
changes before merging. This suggests that automated pull
requests need mechanisms for improving arguments used to
convince developers about the benefits offered by a particular
upgrade and improve confidence in the safety of the upgrade.

This paper makes the following contributions:

• The first empirical study that compares the stimulating
effects of automated pull requests and social pressure
created by badges on updating dependencies.

• A qualitative analysis of developers’ experiences with
using automated pull requests, badges, and dependency
management strategies.

• Implications for improving the design of automated pull
requests for software engineering tasks.

II. MOTIVATING EXAMPLE

Vera maintains a popular open source library that uses over
50 software dependencies, but because of a full-time job and
other commitments, she only has time once a month to make
improvements to the software. Recently, a developer created a
new issue in which he complained that Vera’s project used
many old dependencies that was causing him problems in
upgrading to a new version of NodeJS. Soon after, many
other developers piled on, complaining about several security
vulnerabilities that were present in these dependencies as well.
Distraught about all the negative feedback, Vera wants to be
more proactive in managing her software dependencies, but
she does not know where to start.

Fig. 1. Automated pull request created by greenkeeper.io

One developer recommends she try out greenkeeper.io. He
explains how it works:

• Whenever a new version is available for a package, a bot
makes a pull request to a project’s repo.

• In the pull request, the package management file, pack-
age.json is changed to have the new version, e.g., 2.3.4
=> 2.3.5

• An additional information is included in the comment of
the pull request.

• Since, Vera is using a continuous integration server
(Travis CI) to run on pull requests, then the pull request
will trigger a build and testing step in order to verify if
the version change will break her code.

• If Vera wants to upgrade, she simply merges the pull
request, otherwise she closes the pull request to ignore
the recommendation.

Vera is interested in adopting greenkeeper.io, but worries
that it might cause too many distractions and that she would
eventually just ignore the notifications. Another developer
suggested that she simply use DavidDM. The developer argues
that because it is just a simple badge displayed in her project’s
README.md, she can check the site occasionally to see if
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any dependencies should be upgraded. Further, anyone visiting
her Github project would see that her project is using out-of-
date dependencies, which creates additional social pressure. If
more information is needed, she can visit the site and see a
dashboard describing out-of-date and insecure dependencies.

Fig. 2. Badges displayed on a Github project’s profile page

Vera likes the simplicity of DavidDM, but she worries that
without any proactive reminder, she might forget to check the
site and worse, she still needs to manually verify if a new
version will work with her library. Vera wishes there was
some evidence that would demonstrate the effectiveness of
the different approaches. Further, she would like to catalogue
the strengths and weaknesses of each tool in order to design a
better dependency management tool, as another side project.

III. METHODOLOGY

To learn whether dependency management tools help
developer—and if they do, to what extent—we extracted data
from five sources: (i) GitHub’s public dataset on Google
BigQuery, which is the complete content of public repositories
on GitHub; (ii) GitHub Archive dataset on Google BigQuery,
which is a project that collects all the public events on GitHub;
(iii) Travis-CI API; (iv) GitHub API; and (v) Git history of
public projects on GitHub. We will use this collected data to
answer the following research questions:

A. Research Questions

• RQ1. How does the availability of a dependency man-
agement tool influence update behavior?

• RQ2. How often are projects using the latest versions of
dependencies?

• RQ3. How effective are automated pull requests?
• RQ4. How do developers perceive out-of-date dependen-

cies and make dependency management decisions?

B. Project Selection

We select projects from the Node.js/npm ecosystem, which
has been previously studied in other dependency management
research [14], [15], [16]. Npm contains over 350,000 packages
(currently the largest package registry in the world4). Npm
packages have far more transitive dependencies than CRAN
or RubyGems packages [15], meaning there is more risk in
breaking changes. Given the dynamic nature of Javascript,
and fast growing ecosystem, the problem of maintaining and
updating npm packages is particularly difficult—as confirmed

4https://www.linux.com/news/event/Nodejs/2016/state-union-npm

the top concern by a recent survey of Node.js developers [16].
Collectively, these factors provide a strong motivation for
understanding how to improve this problem.

To be able to compare the effect of different dependency
management tools, we defined three groups of projects: (1)
control group, which does not use any dependency manage-
ment tool; (2) pull request notification group, which contains
projects that used greenkeeper.io; and (3) badge notification
group, which contains projects that used DavidDM.

1) Obtaining Pull Request Group: We used GitHub’s
public dataset to select public JavaScript repositories on
GitHub. GitHub Archive dataset contains all of events on
public repositories on GitHub. We used a query to search
for PullRequestEvents in a repository that were created by
greenkeeper.io. We then selected projects that have received
at least one pull request from greenkeeper.io to be included in
the pull request group.

2) Obtaining Badge Group: To display a badge for a
GitHub project, an image element can be added to a project
file, such as in the README.md, embedding an url image
obtained from DavidDM5. A project can get a url from badge
by registering their project. Using Google BigQuery, we could
search the GitHub Archive dataset for Javascript projects that
contained a badge in the README.md or other projects files.
We matched urls that contained references to david-dm.org,
and extracted the organization (or user) and project name. We
then verified that the badge actually belonged to the GitHub
project. For instance, sometimes manually cloned projects
contained badge references that did not belong to the project.
We excluded these urls from our analysis. We then used this
data to select projects for our badge group if they contained
a validated badge url.

3) Obtaining Control Group: To determine control projects,
we selected projects from the GitHub Archive dataset, but
did not belong in the pull request group. Similarly, we used
another query to verify that our control group projects did not
contain badge urls.

Finally, for all groups, we used the GitHub API to collect
number of stars, watchers, open issues and whether or not a
project is a fork for another project. As a result, we collected
26,324 Javascript projects, which is shown in Table I.

TABLE I
INITIAL PROJECTS: GK (PULL REQUESTS), DM (BADGES), CL

(CONTROL)

Groups Repos stars watchers forks open issues commits

GK 5488 170.3 10.4 22.1 18.9 145.9
DM 11059 111.6 7.9 27.3 8.6 98.9
CL 9777 25.4 3.3 6.0 1.5 280.3

To further refine the projects in our dataset, we used the
criteria of excluding forked, non-starred, and deleted projects,
and selected projects with at least 20 commits. We purposely
did not want to restrict our projects to the most popular and

5Example badge url: https://david-dm.org/bower/bower/status.svg

86



very active projects. One simple reason is that many projects
can be like Vera’s, which can be enhanced infrequently but
actively used, while still needing security and dependency
updates.

As a result, we obtained 7,470 projects (see Table II).
From these projects, 3619 were using badge notification, 2,578
were using pull request notification, and 1,273 did not use
any tool and belong to the control group. Interesting, badge
projects remained the most popular strategy, which can partly
be explained by ease of setup.

TABLE II
FILTERED PROJECTS: GK (PULL REQUESTS), DM (BADGES), CL

(CONTROL)

Groups Repos stars watchers forks open issues commits

GK 2578 360.4 19.4 43.8 20.8 238.1
DM 3619 337.2 20.5 60.0 17.0 250.7
CL 1273 185.6 13.6 37.9 8.0 205.0

C. API Selection

Because some projects can contain very different types of
dependencies, we want to select a subset of dependencies that
we could analyze across all projects groups.

To better isolate the effects of updating, we also looked
at a set of specific APIs used commonly across many of
the projects, in order to observe how updates varied across
the conditions. We performed purposive sampling, or non-
probabilistic sampling, on npm packages. We stratified se-
lection across different levels of popularity, change deltas,
and purpose. For change deltas, we made a list of APIs
that usually have the most changes in each release. Major
releases in some of these packages can be harder update for
developers to update as they may need to rewrite large parts
of their code in order to be able to update to new version.
For purpose, we wanted to select several packages used in
different situations, such as utility packages like lodash, and
compare them with other packages, such as UI frameworks
like express. The final list of packages that we selected
includes lodash, express, mongodb, react, request,
mocha, and redis.

D. Data Collection: Version Changes, Pull Requests, Builds

In order to record all dependency changes of all projects,
we performed the following steps. First we clone each project
from GitHub. Then we searched for the changes to ‘pack-
age.json‘ in the source control history. Then we reviewed those
changes to determine if it resulted in upgrade, downgrade, or
no version change (e.g., changes to the meta-data) of depen-
dencies. Finally, for each dependency we recorded timestamp
of the version change event along with the determined type
of change (i.e., upgrade, downgrade). To make this workflow
scalable we automated these steps using Ansible scripts. 6

To obtain pull requests, we examined the pull request
events in Github Archive made by greenkeeper.io, and then

6https://ansible.com/

we used the GitHub API to collect additional data about the
pull requests, including comments, and the resolution status
(merged, open, closed).

To obtain build status, we first randomly inspected the
comments of those greenkeeper.io created pull requests and
we found several projects were using Travis CI, a continuous
integration service which can integrate with GitHub. These
projects had configured Travis CI to automatically build the
project upon receiving a new pull requests. Further, a recent
study of CI on Github [17] found that Travis CI was by far
the most popular CI tool in use. Therefore, we focused our
collection on getting the status of Travis CI builds triggered
by greenkeeper.io pull requests. We used the Travis CI API to
find the build status of each greenkeeper.io pull request. We
could then determine whether a build failed or succeeded for
each pull request.

E. Version Analysis

After collecting the data, the primary analysis involved de-
termining whether a package was updated or not. We obtained
every commit to a project’s package.json and automatically
analyzed differences (see Figure 3). We extracted the change
packages and version pairs, in addition to other information,
including the commit sha and timestamp.

Fig. 3. Updating a dependency in package.json

1) Calculating Version Range Changes: From the version
pairs, we determined whether there was a upgrade, downgrade,
or no change. Calculating downgrades and upgrades, such
as 2.3.1 => 3.0.0 can be straightforward. However, in
some cases, the semantic version specification also allows a
ranges of versions to be specified. For example, specifying
1.0.x, means any patch changes are allowed. So if a package
version 1.0.9 is pushed to the npm repository, then any
clients that run npm update and have a lower version, will
get the new version.

If the version range is changed, it can be changed to allow
for more version ranges. For example, if there is a change
from 1.0.x => 1.x, then we say there is an increase in the
range of versions allowed and we consider this an upgrade.
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Conversely, if the change was from 1.x => 1.0.x, then
we consider this a downgrade. We have created a version
comparison tool to account for all the ranges allowed in the
semver specifications.

In total, we obtained 344,918 upgrades and downgrade
events.

F. Survey
We constructed a survey with questions related to devel-

oper’s experiences with dependency management and their
perspectives on tool design.

1) Design: We asked several background questions related
to participants’ programming language use, project type, and
use of package managers. Participants were also asked to
describe an experience related to using an out-of-date depen-
dency, and an experience related to a breaking change after
performing an upgrade.

Participants then selected their primary concerns related
to managing dependency and their strategy for managing
dependencies. They were asked about their preferences related
to several possible tools and design choices such as notification
style (including passive displays such as badges or active
devices such as automate pull requests). We also collected
feedback about advanced features, such as auto-migration. Fi-
nally, participants had the option of providing general feedback
in an open-response question.

A second targeted survey was designed to gather feedback
from greenkeeper.io users. Our goal was to gain additional
insight into some of the observations we have made in our
initial analysis of our research questions. The questions are
similar to the general survey, except they are tailored to
experiences and design choices related to using greenkeeper.io.

2) Distribution: We distributed the survey to the general
developer population. We posted to programming forums and
sent to contacts at several large corporations. For our targeted
survey, we sampled random projects from our pull request
dataset, located pull requests created by greenkeeper.io that
were closed by a developer, and then sent them tailored emails
to invite them to give feedback about their experience using
greenkeeper.io.

3) Analysis: We received data from 55 developers, and 7
greenkeeper.io users. To analyze the survey data, we qual-
itatively coded the answers pairs over multiple interactions,
first obtaining codes in open coding, and then using ax-
ial coding to identity themes associated with experiences,
practices, and barriers related to dependencies. During the
qualitative coding process, we employed a technique of ne-
gotiated agreement [18] to address issues of reliability. Using
this technique, the first and second authors collaboratively
code to achieve agreement and to clarify the definitions of
the codes. We coded the first 20% of surveys using the
negotiated agreement technique, and then independently coded
the remaining messages.

G. Replication
We have created a full replication package that can au-

tomatically configure a new virtual machine to install all

necessary analysis tools. We have also released a standalone
npm package for our semantic version range comparison tool.
To support verifiability, we provide supporting online materials
containing dataset, as well as the intermediate analysis which
led to our findings, which other researchers may verify.7

IV. RESULTS

In this section, we present result of our analysis on the data
that we collected, to answer our research questions.

A. RQ1: How Does The Availability of a Dependency Man-
agement Tool Influence Update Behavior?

To understand how automated pull requests and badges
may influence upgrade behavior, we examine the frequency of
dependency changes. Specifically, we can examine the number
of version updates, downgrades, and the time between updates.
Because it may be possible for a large portion of upgrades
to later be reverted to the original version, we also measure
the effective upgrade rate. That is, we look for downgrades
events for a package, and cancel the last upgrade event for
the package (effectively subtracting downgrades from total
upgrades). We measure these values for the groups overall,
as well as for individual packages. Finally, we performed a
two-tailed Wilcoxon rank-sum test on every pair in order to
determine if any differences are significantly significant.

Table III displays our results.
1) Updates, Downgrades: We find that on average, auto-

mated pull requests had statistically significant higher number
of updates comparing to Badges and our baseline. For exam-
ple, lodash had 55% more update events in automated pull
requests compared to Badges. Similarly, lodash was updated
168% more times compared to our baseline.

At the same time, automated pull requests had statistically
significant more downgrades comparing to the other two
groups. Overall, automated pull requests performed 10% more
downgrades than Badges and 35% more downgrades than our
baseline. When we inspected the time between upgrades and
downgrades for automated pull requests, the average lag was
a 2–3 days. This suggests that developers using automated
pull requests updated faster, but they often had to downgrade
quickly, because their code failed to function correctly. We
discuss the consequences of these high downgrade rates later
in the paper.

Finally, we compared the effective upgrade rates with the
simple update measure. In general, there was a strong agree-
ment between effective upgrade rates and the simple update
measure. For example, the difference between the GK vs.
control average upgrade rate (1.58x) and average effective
rate (1.5x) is 0.08x. The reason why is that compared to the
frequency of upgrade events, downgrades occur at a rate that
is at least a order of magnitude smaller. For example, for
the package lodash, there were 5,436 upgrade events but
only 636 downgrades. For automated pull requests, there were
136,459 upgrade events, but only 22,063 downgrade events.

7https://github.com/alt-code/Research/tree/master/VersionBot.
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TABLE III
STATISTICAL SIGNIFICANT DIFFERENCES (P <0.01) OF EFFECTIVE UPGRADES (E-UP), UPDATES, DOWNGRADES, AND UPDATE LAG (IN DAYS)

BETWEEN DIFFERENT PROJECT GROUPS.

PULL REQUESTS1 BADGES CONTROL

e-Up Updates Downgrades Lag e-Up Updates Downgrades Lag e-Up Upgrades Downgrades Lag

lodash 5.61 6.18 2.39 67 3.78 3.99 1.41 108 2.24 2.31 1.24 142
mongodb 5.35 5.62 1.71 145 3.73 4.02 1.38 123 2.22 2.89 2.33 131
react 4.75 5.40 1.94 62 3.79 4.14 1.65 78 2.31 2.48 1.12 84
request 3.91 4.51 1.70 113 4.13 4.49 1.70 119 2.67 2.68 1.10 98
mocha 3.29 3.73 1.67 123 3.15 3.34 1.40 151 2.00 2.16 1.19 173
redis 3.27 3.43 1.13 155 2.55 3.17 1.75 148 1.67 1.86 1.33 270
express 2.59 3.05 1.87 127 3.13 3.31 1.39 165 1.85 2.02 1.42 217

OVERALL 3.24 3.56 1.61 85 2.91 3.11 1.47 113 2.16 2.26 1.192 114

GREEN indicates statistical difference between all conditions, placed at the best performing group. YELLOW indicates statistical difference
with CONTROL.
1 PULL REQUESTS predominately have statistically higher update rates and lower update lag times compared to BADGES and CONTROL.
2 CONTROL has a much lower downgrade rate than other groups. Pull requests can increase the need to rollback broken updates.

While we observe a difference in downgrade rates across
groups, the size is still too small to impact the overall upgrade
rate.

2) Update Lag: We found that on average, automated
pull requests had statistically significant shorter update lag
comparing to the other two groups. They had about 24%
shorter lag between dependency updates comparing to the
badge group, and badge group’s projects had only 1% shorter
lag between dependency updates in contrast to control group.
For example, update lag for lodash was 66 days, 108 days,
142 days in pull request, badge notification and control group
respectively.

The results find that both tools had positive effect on update
frequency and developer behavior. pull request group had
higher number of dependency updates comparing to badge,
and this is because pull request will ask developer to update
for all available new dependency versions. But comes at a
cost: higher rollbacks.

B. RQ2: How Often Projects Are Using the Latest Versions of
Dependencies?

Distribution of dependency versions in each group is one
of the metrics that can help us measure effectiveness of de-
pendency management tools. For example, if 90% of projects
in tool “A” use the latest version of lodash vs. only 50% of
projects in tool “B”, then it provides evidence that tool “A” was
more effective. To find the distribution of dependency versions
we created a bucket for each major version and incremented
count of that bucket when a projects used that major version.
For example if projects used versions between 1.1.1 and 3.4.0,
we would create three buckets 1,2 and 3 and add projects to
their corresponding bucket and then count number of projects
in each bucket. Then, we compared the number of projects
that used that major version in each group using a χ2 with
Yates correction.

We display our results in Table IV. For the packages we
measured, automated pull request projects had the highest
percentage of latest versions. For example, 50.4% of the

automated pull request projects used lodash version 4, vs.
31.3% for badges, and 29.5% for our baseline. For mongodb
version 2, was used by 87.5% of automated pull request
projects, vs. 54.1% for badges, and 63.64% for our baseline.

In many cases, automated pull requests had between 20–
50% higher occurrences of the latest version of a package
over our baseline. Badges often had smaller to no difference
in latest versions over our baseline.

TABLE IV
STATISTICAL SIGNIFICANT DIFFERENCES (P <0.01) IN DISTRIBUTIONS OF

MAJOR VERSIONS ACROSS PROJECT GROUPS.

Package p-value PULL REQUESTS BADGES CONTROL

lodash <.01

mongodb .18

react .71

request .04

mocha <.01

redis .13

express <.01

C. RQ3: How Effective Are Automated Pull Requests?

To understand the effectiveness of automated pull requests,
we want to find how many of pull requests were accepted. We
also want to evaluate whether other factors such as availability
of automated builds influenced acceptance rates. Finally, we
examined the targeted developer survey to understand how
developers perceived the effectiveness of greenkeeper.io.

Only 1/3 of pull requests were merged. To find how many
of pull requests were merged, we ran a SQL query to find
ratio of total number of pull requests by greenkeeper, to the
pull requests that were merged. We also ran SQL queries on
the build history of pull request group’s projects which we
collected from Travis CI before. 72% of projects in our initial
pull request group’s sample used Travis CI to automatically
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build all new pull request. Results show that only 24% of
pull requests were failing. Pull request that had a Travis CI
build had slightly higher merge rate. Specifically, 32% of pull
requests that had a Travis CI build were merged, while only
27% of pull requests that didn’t have a build were merged.
This indicates using CI can reduce the change of encountering
a broken build, but not substantially.

Surprisingly, 2% of failing builds were still merged. In
the surveys with greenkeeper.io users, developers explained
that they sometimes merged broken pull requests in order to
manually perform more extensive testing.

1) Developer Feedback: Based on our targeted survey, we
were able to better understand how developers used Green-
keeper.io.

• Batching. Greenkeeper.io sends a pull request per depen-
dency update. However, several participants rather have
these updates batched into a single pull request, which
they could manually review in a more through manner.
Several participants mentioned that npm package authors
can be “trigger happy”. They publish several releases in
a row as they are refining a new feature or release, which
results in microbursts, meaning that the whole community
can receive 3–5 pull requests in a row, instead of just
one. For example, recently a new version of request
2.73.1 was updated several times in a few minutes,
with commit messages like, “oops. forgot to remove
debug”, quickly followed by another version change to
“remove trailing comma”.

• Content. Participants had several suggestions on how to
improve the content of the notification in the pull request
body. Some developers wanted more information, such
as changelog entries instead of just git commit messages.
This way they could better judge the scope of the version
change. However, one participant felt the content was
“too busy”, and should be limited to dependency, version,
and whether it passes or fails CI. However, the participant
did also suggest the possibility of including a confidence
score that helped estimate the risk of merging a pull
request. Future work could identify possible factors, such
as rollbacks or number of signature changes, in support
of a recommender system for merging pull requests.
Finally, one developer wanted more control over how to
customize the style of the commit messages, which did
not fully follow the project’s conventions.

• Cleanup. There were several concerns related to improv-
ing the workflow and aspects not fully automated. For
example, many branches can be created from the pull
requests, but they are not automatically removed after
being merged. This can result in developers spending sig-
nificant time manually cleaning up and verifying which
branches can be removed and which ones may correspond
to open requests. Another task was related to publishing
a new release. Currently, if a developer merges a pull
request, they still have to manually create a new release.
Even if there is simple change, extra work is involved in
publishing a new release for users.

Based on our results, we find that automated pull requests
can be effective but noisy. Previously, we found that they
can result in higher and faster upgrade rates, but also have
higher rates of rollbacks. In this analysis, we found that only
1/3 of the pull request were merged. We also found that a
nearly quarter of the builds fail. Further, developers report
several design issues that can cause developers make using
automated pull requests less effective. As a result, developers
may perform more updates, but several factors can contribute
to lower productivity.

D. RQ4: How Do Developers Perceive Out-Of-Date Depen-
dencies and Make Dependency Management Decisions?

Developers were clear that dependency management re-
mained a difficult problem. As one developer responded,
“it is one of the most significantly painful problems with
development”. The top three concerns for developers were
breaking changes (changes that contain syntactical or semantic
incompatibilities), understanding the implications of changes,
and migration effort. Surprisingly, monitoring changes (the
effort associated with checking the availability of new versions
of dependencies) was the lowest rated concern. Interestingly,
developers closely rated the concerns of losing features and
security, suggesting there several developers value preserving
features as strongly as staying secure.

1) Awareness Preferences: We asked developer to describe
their preferences for how they wished to be informed about
changes in dependencies. 54% preferred a passive style noti-
fication such as a dashboard or badge, while 46% preferred
automated mechanisms.

2) Control: A major theme that emerged from the sur-
vey results was the concept of control. Several developers
rejected the notion of even using package managers, wanting
to explicitly manage the process themselves: “[I am not a]
*mindless developer*, who turns that responsibility over to
package managers”. Another developer stated:

I want the thought of updating to be a deliberate act,
not just to get rid of a badge count or something -
badge counts *nag* you...

3) Update Practices: Developers identified several strate-
gies for updating dependencies. These strategies roughly cor-
responded to a quick, scheduled, and reactive philosophy.

Developers who selected a quick strategy, believed that
responding to updates immediately and merging them allows
them to incrementally offset the technical debt associated with
changing dependencies.

Other developers maintained a scheduled strategy. These
developers used a systematic and scheduled method for re-
viewing changes in dependencies. For example, one developer
describes how they reviewed dependencies quarterly, and then
recommended upgrades to management. Another developer
described how they had a team whose responsibility was to
change versions of libraries and packages for the company.

A large set of developers used a reactive strategy. They
waited until a situation required that them to update a depen-
dency, i.e., “the squeaky wheel gets the grease”. When dealing
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with multiple teams, this could get more complicated. In one
company, updates happen when enough momentum builds up
for one team to move to a new version of a library. The team
will just perform the update and let the other teams know to
work with the new dependencies when they merge.

Finally, one developer cautioned others about using a quick
strategy:

There is something seductive about being up to
date with all your libraries, but the reality is that
updating usually costs more than it benefits, so the
best strategy is to update infrequently. Sad if you’re
a library developer, but that’s the reality.

V. DISCUSSION

We discuss several observations related to our findings and
provide advice for the design of other automated pull requests.

A. Upgrade Suspicion

Developers are strongly influenced by even a single negative
experience in how it shapes their beliefs about software
engineering practices [19]. Devanbu and colleagues finds that
these beliefs can be difficult to change without being provided
with strong arguments. For example, one developer describes
their conservative stance on updating a dependency, which is
driven by a single bad experience:

I’ve had a large .net control library get hit with a
couple of nasty regression bugs after updating to get
other bugs fixed. If everything is working now, why
would I touch it?

Even when repositories use continuous integration with
extensive test suites, dependency updates can still break. A
common reason for this is that the update changes a feature
that is difficult to unit test, lacks test coverage, or is a little
used feature within the program.

Going from nodemailer 0.5.x to 2.3.x exposed a
difference in how services are supported. The earlier
versions provided defaults for gmail, yahoo, icloud,
send grid etc. These have been extracted out into
plugins. Not sure we are going to handle this but
email isn’t a feature that is used a great deal so
I’ve upgraded to the latest that doesn’t cause the
breaking change: 0.7.1.

Each automated pull request that a developer receives asks
them to confront this upgrade suspicion—regardless of how
harmless the update maybe. For many developers, this upgrade
suspicion will persist. Automated pull requests need to include
several measures to counter this effect, including providing
arguments for why a developer should consider an upgrade:
As one developer states, “it would take hell of a good reason
to even consider it”.

B. Notification Fatigue and Awareness

Developers were mixed in their preference for notifications.
While developers appreciated the value of receiving a timely
notification, they were concerned with the consequences of
yet another source of notifications. They believed any attempt

to use a tool that provided version update notifications would
either be ignored, become annoying, and overall result in “too
many darn notifications”.

Badges serve as an interesting alternative to techniques that
involve notifications. They are a simple mechanism without
any automation support, yet evidence found they could be
effective in encouraging developers to update software de-
pendencies. Instead of relying on an automated mechanism
to detect that a new version could be updated, badges rely
on social mechanisms. Badges can introduce social pressure
through public shaming to encourage developers to update
software dependencies. Other developers can judge when an
out-of-date dependency is worth the attention of the project
and create a corresponding issue or pull request. In our manual
inspection of repositories, we have seen evidence of this
practice. Overall, badges offer a relatively effective alternative
to “pushy” automated mechanisms.

However, one developer was concerned with the mindset
that is created by these tools:

[These tools] are annoying. They create an artifi-
cial sense of urgency in less experienced and less
thoughtful engineers who feel compelled to ”keep
things green”, making it easy to fall into the trap of
perpetually responding to changes in dependencies
rather than building new value into your product.

C. Implications for Automation Tool Design

Acharya and colleagues [20] describe a vision where code
drones autonomously perform simple chores, such as up-
grading software dependencies, performance optimizations, or
performing simple refactorings. Automated pull requests are
a stepping stone to this future, which still allows a human to
make a final judgment about a change to the software. The
widespread adoption of tools such as greenkeeper suggests
that such a future may be here sooner than we expect.

However, the points of friction identified in this work can
help inform the design of automation tools. We provide three
implications for design that can help inspire how automated
pull requests are built:

• Argumentation. An agent of automation needs the ability
to provide an argument that explains why a change
should be made to a software system. This should be
supported by evidence and data automatically obtained
by the agent (e.g., evidence of sizable improvement to
system performance after internal testing of a change).
When possible, changes should be supported by empirical
evidence of success: Other updates saw similar levels of
performance gains and were not rolled back.

• Transparency. Norman argues that automated systems
always need the ability for humans to intervene and
takeover an automated process [21]. Unfortunately, he
describes how automation in situations such as automated
flight has the tendency to work for the easiest tasks and
fail for the hardest tasks. To counter this, Norman argues
that automated systems need to continuously expose its
state and provide the ability for a human to take over at
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critical moments. For automated pull requests, it may not
be possible to propose a fully functional change. Instead,
developers may need to take over and finish the last
set of changes in order to use the recommendation. For
example, we observed that developers merged code that
did not build in order to manually make the corrections
themselves.

• Confidence. Automated pull requests should also take
into account confidence measures that developers can use
to estimate the risk of performing an update. For example,
sometimes merged pull requests are quickly downgraded.
If these rollbacks are automatically tracked, then there
several opportunities to use this data to calculate a confi-
dence score for upgrade success. Another approach would
be to perform A/B testing with developers that are willing
to try new updates at a faster cadence, calculate rollback
rates, and then roll out updates to other repositories.
Another tactic can use API method coverage in the
client test suite when calculating a confidence score. For
example, if a programmer is using the mongodb sort
method in their program, but lacks tests for that code,
then any upgrade that involves a change to the underlying
mongodb sort method implementation can be consid-
ered risky. But if the developer adds tests covering usage
of the sort method, then any upgrade that involves a
change to the mongodb sort method implementation
can now be considered less risky. Finally, it could be
possible to integrate program analysis techniques which
try to predict incompatibilities between different versions
of dependencies and a target system [22]. Using all
of these measures, a risk index can be calculated for
upgrades between pairs of dependency versions.

VI. RELATED WORK

Research has investigated api evolution, software ecosys-
tems, which often include understanding the interconnected
nature of dependencies and projects, awareness, and explored
techniques for automatic API migration.

A. API Evolution

McDonnell and colleagues [23] conducted an in-depth case
study of the Android API and client mobile applications.
In the study, they find that client applications typically take
14 months before upgrading to a new version, despite new
versions being released every three months. Meanwhile, the
API itself changes considerably, causing 28% of API refer-
ences in a client application to become obsolete. Sawant and
colleagues [24] studied five Java APIs and analyzed how their
clients reacted to deprecation of API methods. They found that
few API clients update their API versions. Unfortunately, the
most common reaction to a deprecation is to either ignore or
delete the element without replacing it with its recommended
counterpart.

Dig and Johnson find in a study of five APIs that structural
refactoring of the methods and classes caused most breaking
changes [25]. Ruiz and colleagues [7] have investigated the

presence of behavioral breaking changes that cannot be de-
tected by signature changes of the API alone. In the study, the
authors used the API clients test suite on 68 versions from 15
popular Java software libraries in order to determine if there
were any differences in behavior between API versions. As a
result, most of API versions (52) contained behavioral break-
ing changes. Further, these breaking changes could be linked
to 144 real world bugs. These observations are consistent with
our developer’s biggest concern of breaking changes.

These studies provide empirical backing for developers’
concerns related to breaking changes and efforts related to
migrating code to new versions. In our study, our empirical
evidence can provide guidance for social and technical factors
relevant to applying these methods.

B. Dependencies and Software Ecosystems

German et al. [2] describe multiple problems associated with
managing and specifying dependencies, including download-
ing, building, and satisfying interdependent artifacts, which
may not always be explicitly documented. They propose a
framework for categorizing dependency types and a method
for building and visualizing an inter-dependency graph of a
package. Lungu and colleagues [26] note that dependencies
also exist between projects in a software ecosystem. They pro-
pose a model, which can capture inter-project dependencies.

Because of these inter-project dependencies, software
projects must adopt strategies, that help coordinate how
downstream and upstream project changes are handled. Bog-
art and colleagues [14] studied the Eclipse, R/CRAN, and
Node.js/npm ecosystems and they found that each ecosystem
used a different strategy which reflected the community’s
values. For example, the R/CRAN community strongly pre-
ferred simultaneous upgrades to the latest versions of de-
pendencies across projects. To understand contextual factors
related to managing inter-project dependencies, Bavota and
colleagues [27] analyzed dependency changes, mailing lists,
and issue tracking systems in 147 Java projects from the
Apache community. They found that a client project tends
to upgrade a dependency only when substantial changes in
the library project are released, including bug-fixes. It is
interesting to contrast this with the quick style of upgrade
management used by some of the developers in our study,
which can be facilitated by using automated pull requests.

In a software ecosystems, changes ripple through the entire
ecosystem, which can impact multiple parties. We observed
this factor when developers described the impact of receiving
many pull requests as a consequence from rapid publishing of
npm packages. Tools like greenkeeper.io, for better or worse,
can amplify the impact of a single author publishing a change
across an entire ecosystem.

C. Awareness

Several tools have been developed to help developers main-
tain awareness of changes in APIs and dependencies. Cadariu
and colleagues [3] created a Vulnerability Alert Service (VAS)
that can scan Maven dependencies of a project for security
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vulnerabilities. The scanner checked for Common Vulnera-
bilities and Exposures (CVE) that existed in the dependency
changelogs or code history and automatically generated alerts
for developers. Apiwave [28] is a tool that tracks API popular-
ity and migration between frameworks and libraries. The tool
provides a dashboard visualization and search tool for 320K
APIs and tracked evolution of 650 Java projects. While these
tools provide the capability to notify and inform developers
about changes in APIs, there are several limitations. VAS can
alert developers of a security vulnerability, but they cannot
provide a recommendation for fixing it. Further, many package
management systems, such as npm, already provide this capa-
bility directly into the package management system. Apiwave,
allows developers to understand changes in popularity of APIs;
however, they do not provide usage or migration information
related to changes in versions.

Kula and colleagues [1] examined whether security advi-
sories had any influence over library dependency updates.
After studying over 4,600 GitHub software projects and 2,700
library dependencies, the researchers found that 81.5% of the
studied systems still keep their outdated dependencies and
were not likely to respond to a security advisory. Surveys
with developers revealed that 69% of the interviewees were
simply unaware of the advisory. These results highlight that
ineffective methods for maintaining awareness can be a lim-
iting factor, and may explain why other mechanisms, such as
badges, can be more engaging.

D. Automatic API Migration

Several researchers have developed techniques for support-
ing developers in automatically migrating API versions. Many
techniques have proposed instrumenting [29], [30] developers’
programming environments for tracking the fine-grain evolu-
tion of APIs. Other techniques detect differences between API
signatures [31] in order to recommend migration scripts for
clients. Finally, Nguyen and colleagues [13] have proposed
mining client changes in order to infer API migration scripts.
Unfortunately, Cossette and Walker [32] caution researchers
about the practical effectiveness of these approaches: in their
study, no one technique could achieve a fix rate over 20%.

In organizations, such as Google, where all dependencies,
toolchains, and projects are checked into a single code reposi-
tory, other opportunities exist [33]. For example, Rosie enables
company-wide migration of APIs by performing a system wide
migration across all callsites. These changes are then staged,
tested, and sent for code review. Once all changes have been
approved, they are instantly merged into HEAD. Replicating
this process in open source communities is another matter [14].

The emergence of automated pull requests offers an exciting
opportunity for researchers to transfer their techniques into
practice. Our findings provide further evidence motivating the
concern developers have in migration effort. Further, the fact
that over a quarter of automated pull requests resulted in build
failures, provides empirical evidence for the need of automated
migration support. However, when asked about automatic
migration, developers remain deeply skeptical—future work

will need to overcome both the technical and social challenges
associated with automated API migration.

VII. LIMITATIONS

Generalizability. We caution readers to not overgeneralize
our results. While we analyzed a large sample of open-source
repositories, these results may not extend to proprietary sys-
tems, which may operate under different constraints. Further,
we examine npm packages, which can include many new and
evolving packages. The dynamic nature of Javascript can result
in harder to detect breaking changes, which may be less of
concern in other languages.

Causality and Project Selection. One threat is related
to causality. Our evidence may only suggest correlations
between tool use and improved update behavior. There are
other possible explanations that can explain our results. For
example, one possible explanation is that more experienced
developers choose tools such as greenkeeper.io; and as a
result, the experienced developers also upgrade dependencies
more often. Because we find only correlations, this limits are
ability to claim that using a particular tool was certainly the
reason why a developer choose to upgrade more often. Another
related threat is that by looking for projects that use a particular
tool, we could be selecting projects that are more active than
control projects. We believe that by comparing two different
tools with similar activity levels, we can provide a more fair
baseline for comparing automated pull requests. While this
somewhat mitigates the threats, this does not eliminate them.
Instead, we believe this offers preliminary evidence that can
be further validated in future studies.

VIII. CONCLUSION

Developers need incentives and automated mechanisms that
can improve their completion of important maintenance tasks
without being too distracting or time-consuming. In this study,
we evaluated two mechanisms, (1) automated pull requests,
and (2) badges, in order to see if they can encourage de-
velopers to upgrade software dependencies. We compared
these mechanisms to a baseline set of projects that did not
use any mechanism. We also surveyed developers about their
experiences and concerns with dependency management and
preferences for tool support. Our findings show that automated
pull requests can encourage developers to update dependencies
quicker and at a higher rate than badges or our baseline.
Further, projects with automated pull requests more often have
higher versions of the dependencies. Unfortunately, several
problems exist with automated pull requests. Higher rates of
rollbacks, notification fatigue, gaps in continuous integration,
and tool design issues can interfere with a developer’s pro-
ductivity. Badges can provide some benefits over our baseline
while reducing these negative aspects of automated pull re-
quests. For researchers, many research challenges remain for
improving the user experience of automated pull requests.
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